1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
| import tensorflow as tf import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size
#定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10])
#创建一个简单的神经网络 w = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,w) + b)
#二次代价函数 loss = tf.reduce_mean(tf.square(y - prediction))
#使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量 init = tf.global_variables_initializer()
#定义求准确率的方法,结果存在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess: sess.run(init) for epoch in range(21): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
|