| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 
 | import tensorflow as tfimport numpy as np
 
 from tensorflow.examples.tutorials.mnist import input_data
 
 #载入数据集
 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
 
 #每个批次的大小
 batch_size = 100
 #计算一共有多少个批次
 n_batch = mnist.train.num_examples // batch_size
 
 
 #定义两个placeholder
 x = tf.placeholder(tf.float32,[None,784])
 y = tf.placeholder(tf.float32,[None,10])
 
 
 #创建一个简单的神经网络
 w = tf.Variable(tf.zeros([784,10]))
 b = tf.Variable(tf.zeros([10]))
 prediction = tf.nn.softmax(tf.matmul(x,w) + b)
 
 #二次代价函数
 loss = tf.reduce_mean(tf.square(y - prediction))
 
 #使用梯度下降法
 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
 
 #初始化变量
 init = tf.global_variables_initializer()
 
 #定义求准确率的方法,结果存在一个布尔型列表中
 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
 #求准确率
 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
 
 
 with tf.Session() as sess:
 sess.run(init)
 for epoch in range(21):
 for batch in range(n_batch):
 batch_xs,batch_ys = mnist.train.next_batch(batch_size)
 sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
 
 acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
 print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
 
 |