1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
| import tensorflow as tf import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#每个批次的大小 batch_size = 64 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size
#定义placeholder,x为输入,y为label x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10])
#定义占位符,dropout的比例,神经元工作的比例 keep_prob = tf.placeholder(tf.float32)
#神经网络参数 L1_size = 200 L2_size = 200 L3_size = 200
#定义神经网络 W1 = tf.Variable(tf.truncated_normal([784,L1_size],stddev = 0.1)) b1 = tf.Variable(tf.zeros([1,L1_size]) + 0.01) z1 = tf.matmul(x,W1) + b1 a1 = tf.nn.tanh(z1) L1_drop = tf.nn.dropout(a1,keep_prob)
W2 = tf.Variable(tf.truncated_normal([L1_size,L2_size],stddev=0.1)) b2 = tf.Variable(tf.zeros([1,L2_size]) + 0.01) z2 = tf.matmul(L1_drop,W2) + b2 a2 = tf.nn.tanh(z2) L2_drop = tf.nn.dropout(a2,keep_prob)
W3 = tf.Variable(tf.truncated_normal([L2_size,L3_size],stddev=0.1)) b3 = tf.Variable(tf.zeros([1,L3_size]) + 0.01) z3 = tf.matmul(L2_drop,W3) + b3 a3 = tf.nn.tanh(z3) L3_drop = tf.nn.dropout(a3,keep_prob)
Wout = tf.Variable(tf.truncated_normal([L3_size,10],stddev=0.1)) bout = tf.Variable(tf.zeros([1,10]) + 0.01) zout = tf.matmul(L3_drop,Wout) + bout prediction = tf.nn.softmax(zout)
#代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y,logits = prediction))
#梯度下降法的优化器 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#变量初试化 init = tf.global_variables_initializer()
#求准确度 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess: sess.run(init) for epoch in range(100): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0}) print("Iter" + str(epoch) + ",Testing Accuracy:" + str(test_acc) + " | Trainung Accuracy:" + str(train_acc))
|