1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
| import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var)
def weight_variable(shape,name): initial = tf.truncated_normal(shape,stddev=0.1) return tf.Variable(initial,name=name)
def bias_variable(shape,name): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial,name=name)
def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
with tf.name_scope('input'): x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input') with tf.name_scope('x_image'): x_image = tf.reshape(x,[-1,28,28,1],name='x_image')
with tf.name_scope('Conv1'): with tf.name_scope('W_conv1'): W_conv1 = weight_variable([5,5,1,32],name='W_conv1') with tf.name_scope('b_conv1'): b_conv1 = bias_variable([32],name='b_conv1')
with tf.name_scope('conv2d_1'): conv2d_1 = conv2d(x_image,W_conv1) + b_conv1 with tf.name_scope('relu'): h_conv1 = tf.nn.relu(conv2d_1) with tf.name_scope('h_pool1'): h_pool1 = max_pool_2x2(h_conv1)
with tf.name_scope('Conv2'): with tf.name_scope('W_conv2'): W_conv2 = weight_variable([5,5,32,64],name='W_conv2') with tf.name_scope('b_conv2'): b_conv2 = bias_variable([64],name='b_conv2')
with tf.name_scope('conv2d_2'): conv2d_2 = conv2d(h_pool1,W_conv2) + b_conv2 with tf.name_scope('relu'): h_conv2 = tf.nn.relu(conv2d_2) with tf.name_scope('h_pool2'): h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('fc1'): with tf.name_scope('W_fc1'): W_fc1 = weight_variable([7*7*64,1024],name='W_fc1') with tf.name_scope('b_fc1'): b_fc1 = bias_variable([1024],name='b_fc1')
with tf.name_scope('h_pool2_flat'): h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name='h_pool2_flat') with tf.name_scope('wx_plus_b1'): wx_plus_b1 = tf.matmul(h_pool2_flat,W_fc1) + b_fc1 with tf.name_scope('relu'): h_fc1 = tf.nn.relu(wx_plus_b1)
with tf.name_scope('keep_prob'): keep_prob = tf.placeholder(tf.float32,name='keep_prob') with tf.name_scope('h_fc1_drop'): h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob,name='h_fc1_drop')
with tf.name_scope('fc2'): with tf.name_scope('W_fc2'): W_fc2 = weight_variable([1024,10],name='W_fc2') with tf.name_scope('b_fc2'): b_fc2 = bias_variable([10],name='b_fc2') with tf.name_scope('wx_plus_b2'): wx_plus_b2 = tf.matmul(h_fc1_drop,W_fc2) + b_fc2 with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b2)
with tf.name_scope('cross_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction),name='cross_entropy') tf.summary.scalar('cross_entropy',cross_entropy)
with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy',accuracy)
merged = tf.summary.merge_all()
with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer = tf.summary.FileWriter('logs/train',sess.graph) test_writer = tf.summary.FileWriter('logs/test',sess.graph) for i in range(1001): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5}) summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) train_writer.add_summary(summary,i) batch_xs,batch_ys = mnist.test.next_batch(batch_size) summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) test_writer.add_summary(summary,i) if i%100==0: test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images[:10000],y:mnist.train.labels[:10000],keep_prob:1.0}) print ("Iter " + str(i) + ", Testing Accuracy= " + str(test_acc) + ", Training Accuracy= " + str(train_acc))
|